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We consider a simple extension of the familiar Debye–Hückel theory of electro-
lyte solutions (in which the ions are represented by spheres with embedded point
charges) to study the thermodynamic properties and the phase diagram of ionic
solutions in which the ions of at least one of the species are deformed into
parallel and rigid needle-like ellipsoidal objects that have a continuous line of
charge distribution along their axis of revolution. We examine two specific
cases: (a) solutions comprising both cationic and anionic needles that are iden-
tical in every respect except for the charge sign, and (b) solutions in which only
one ionic species is made up of parallel rigid needles while the other species is
made up of point ions. The first system is the analog, for ionic needles, of the
familiar restricted primitive model of electrolytes, while the second one is a very
simple model for a polyelectrolyte solution. For both systems we investigate
how the phase diagram is affected by the extent of deformation of the ions, as
measured by the spatial spread of their charge distribution.

KEY WORDS: Charged-aligned needles; polyelectrolyte solutions; charge dis-
tribution; Debye–Hückel; phase separation; coexistence line; critical parameters.

1. INTRODUCTION

The last decade has witnessed extraordinary interest in understanding and
characterizing the phenomenon of phase separation in electrolyte solutions,
in which two liquid phases of different electrolyte concentrations coexist in
equilibrium. (1, 2) The related question concerning the critical exponents of
the associated critical point has also received extensive scrutiny. (1, 2)

By far the bulk of this theoretical activity has focused on the restricted
primitive model (RPM) of an electrolyte solution. This is a symmetric



model formulated at the McMillan–Mayer level, (3, 4) in which the solvent-
averaged interactions between the ions are represented by the interactions
between hard spheres with embedded point charges. Except for the sign of
their charges, cations and anions in the RPM are identical. The instability
with respect to phase separation has also been investigated, to a lesser
degree, for size- and/or charge-asymmetric primitive models of electrolyte
solutions. (2, 5–8) So-called civilized models, which dispense with the hard-
sphere representation of the short-range interactions, have also been con-
sidered. (9)

The techniques employed in these studies include computer simulations,
Ornstein–Zernike integral equation studies implemented with a variety of
closure relations, as well as simpler mean-field theories constructed by
piecing together various contributions to the Helmholtz free energy. In
many of the analytical approaches allowance is made for chemical associa-
tion of anions and cations to form ion pairs or larger clusters.

While these theories can account for the fact that in certain range of
temperature and concentration an ionic solution becomes unstable against
phase separation into two liquid phases of different concentration, they
have not been entirely succesful in accurately predicting the location of the
critical point. However, the theoretical efforts and experiment agree in that
the coexistence line is quite asymmetric; the positive slope of the low con-
centration branch being considerably steeper than the negative slope of the
high concentration branch. In fact the asymmetry of the coexistence line is
strikingly reminiscent of the coexistence line in polymer systems.

In the polymer case, the degree of asymmetry of the coexistence line is
a sensitive function of the mean number of monomeric units N of the chain
polymers. In mean-field theories, such as that of Flory and Huggins, as
N goes from N=1 to N=., the coexistence curve goes from a simple
Bragg–Williams or van der Waals form to one in which the critical number
density rcrit goes to zero. (10) This prompted Michael Fisher to ask in his
Onsager Symposium lecture (1) whether there is any analogous control
parameter for the RPM representation of an electrolyte solution.

One answer was given by Stell in his Onsager Symposium contribu-
tion (2) on the basis of work done by Høye and Stell, who noted that
2/(d − 2), where d is the spatial dimensionality, can play the role of N for
the RPM. Here the d-dimensional RPM particles are defined by hard
d-dimensional hyperspheres plus Coulomb interactions that satisfy Laplace’s
equation in d dimensions. A simple mean-field theory that illustrates the
analogy with the Flory–Huggins polymer result is given by an equation of
state that has the hard-hypersphere contribution appropriate to low density
in any dimension, bPr=r/(1 − Br), (where b=(kBT)−1 is the inverse of
the temperature expressed in energy units, P is the pressure, and B is the
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second virial coefficient) plus the dominant Coulombic contribution, which
in 3d is given by the well known expression (bPq)3=−x3/24p (where x

is the inverse Debye shielding length). This Coulomb-related term can be
alternatively represented as (bPq)3=−A3(br)3/2, with A3=p1/2q3/3E3/2

(where q is the magnitude of the ionic charge and E is the dielectric constant
of the medium). In d dimensions, this becomes (bPq)d=−Ad(br)d/2, with
Ad=constant × qd, to yield the equation of state

(bP)d=(bPr)d+(bPq)d=
r

1 − Br
− Ad(br)d/2.

For d=4 this is exactly of van der Waals form. For any 2 [ d [ 4,
Brcrit=(d − 2)/(d+2), so that in the d Q 2 limit rcrit Q 0.

Subsequently, Fisher and coauthors used more refined Debye–Hückel-
based mean-field theories for the RPM to study the d Q 2 limit, and
showed that one obtains many of the features of the Kosterlitz–Thouless
transition that is expected in that limit from their approximation. (11)

The parameter 2/(2 − d) is not experimentally accessible, leading
Stell and Høye to inquire whether one could find a physically realizable
sequence (keeping d=3) that is like changing d from 4 to 2 (or at least 3 to 2,
since one is starting at 3). In a preliminary investigation they concluded in
the affirmative, and that such a sequence can be provided by distorting the
charged spheres of diameter s into parallel charged ellipsoids of major axes
a, b, and c, with s3=abc=a2c, with a line of charge running along the axis
of revolution of each ellipsoid. As we approach the infinitely long-needle
limit, c Q ., we again expect the same change in coexisting-curve symme-
try. This paper describes the details of this limiting process as well as a
closely related one in which only the spheres of one charge sign are elon-
gated, with the spheres of the opposite charge remaining charged spheres of
arbitrarily small diameter, which we treat simply as point ions.

The system of charged needles and oppositely charged counterions
shares many of the features of models that are used to study polyelectrolyte
solutions, but there are certain key differences between our treatment here
and current treatments (12) of such polyelectrolyte models. On the one hand,
we assume that our needles are constrained to remain parallel or nematically
ordered, so that we are unable to address the key issue of the isotropic-
nematic transition in a polyelectrolyte solution. On the other hand, we begin
with a model in which the interaction between charge elements is given by a
Coulombic potential, rather than a preaveraged potential of mean force of
Debye–Hückel (i.e., Yukawa) form. In this regard, our treatment is a highly
sophisticated one, since we explicitly do the statistical-mechanical summa-
tion that introduces the Debye shielding between charge elements.
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In future work we hope to refine our theory by introducing Bjerrum
type association and charge dipole interactions. We also intend to extend
the model by allowing a distribution of orientations among the needles.

To calculate the thermodynamic properties of these model systems we
focus on the McMillan–Mayer level thermodynamic potential I — − bA/V,
defined in terms of the Helmholtz free energy A of the ionic system and the
volume V of the solution. (3, 4) We approximate I by the sum

I=Ir+Iq, (1.1)

where the reference part Ir=−bAr/V incorporates both the ideal (or
noninteracting) contribution as well as the contribution from the non-elec-
trostatic short-range interactions between the ions to the excess Helmholtz
free energy. Correspondingly, Iq=−bAq/V originates from the long-range
electrostatic interactions between the ions. In our approach Ir and Iq are
calculated independently of each other. In particular we estimate Iq by
means of a simple extension of the familiar Debye–Hückel theory of elec-
trolyte solutions to the case in which the charge distribution of the ions has
non-zero spatial extent.

The outline of the paper is as follows. We begin in Section 2 with a brief
summary of the Debye–Hückel result for the electrostatic contribution Iq in
the case of an electrolyte solution comprising point ions. In Section 3 we
consider solutions of charged needles, where we develop, in turn, (i) the gen-
eralization of the point-ion Debye–Hückel result for Iq obtained in Section 2
to charged aligned needles, (ii) the derivation of an expression for the
osmotic pressure of the solution of needle-like ions as a function of the ionic
number density r and the temperature (equation of state in the McMillan–
Mayer system of variables), and finally (iii) the derivation of approximate
expressions, valid for sufficiently long needles, for the dependence of the cri-
tical temperature Tcrit and critical density rcrit with the inverse range param-
eter c that characterizes the spatial spread of the charge distribution of a
needle-like ion. In Section 4 we report similar results for a very simple repre-
sentation of a polyelectrolyte solution, in which the polyelectrolyte ions are
represented by charged aligned needles and the counterions are represented
by point charges. In Section 5 we present the results of numerical calcula-
tions of the coexistence line for the liquid–liquid phase equilibrium for both
sytems. We also report, again for both electrolyte systems, the parametric
dependence of the critical temperature and critical density with the inverse
charge range parameter c, spanning the range from point ions to very long
needles. In Section 6 we present a brief summary of the results reported in
Sections 3–5. In Appendix A we briefly examine the expressions for the
needle–needle correlation functions calculated at the Debye–Hückel level.
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2. DEBYE–HÜCKEL THEORY FOR POINT CHARGES

In Gaussian units the interaction between two point charges in a con-
tinuum medium of dielectric constant E is

fij(r)=qiqj/Er, (2.1)

where qi and qj are the charges of particles i and j, while r is their separa-
tion. The Fourier transform f̃ij(k) in three-dimensional space of fij(r) is

f̃ij(k)=4pqiqj/Ek2. (2.2)

The contribution to the free energy from this interaction is, in the
Debye–Hückel approximation, obtained by summation of the ring graphs
where the bonds are potential energy bonds, and the vertices are simple
r-vertices. In evaluating these graphs one has convolutions in Fourier
space, and summation of all of them yields the electrostatic contribution Iq

to the thermodynamic potential I [cf. Eq. (1.1)]:

Iq=−
1
2

F
d3k

(2p)3
5ln 11+

x2

k2
2−

x2

k2
6 . (2.3)

The temperature and density of the solution are collected in the Debye
inverse shielding length x, as shown in the equation

x2=
4pb

E
C

i
q2

i ri. (2.4)

Here ri is the number density of the ionic species i in the solution. By
evaluation of Eq. (2.3) one obtains the well known Debye–Hückel result

Iq=
x3

12p
(2.5)

for the electrostatic contribution to the thermodynamic potential I.
In this simple derivation the effect of the ionic hard cores is neglected.

This effect is taken into account when applying the MSA (mean spherical
approximation). In the MSA the graph sum (2.3) still applies, but the
interaction inside the hard core radius is modified such that when evaluat-
ing the corresponding pair-correlation function the hard-core condition is
fulfilled.
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3. CHARGED NEEDLES

We consider a solution of a binary electrolyte comprising N+=N/2
nonspherical cations of charge q and N− =N/2 nonspherical anions of
charge − q dissolved in a solvent (modeled as a continuum dielectric
medium) of dielectric constant E. The cations and anions are identical
in every respect, except for the sign of their charges. Furthermore, as
explained in the introduction, the charge q in an ion is not concentrated in
a single point within the ion.

The square of Debye inverse shielding length for this model is x2=
4pbq2r/E, where r — r++r− is the total number density of ions in the
solution.

3.1. The Electrostatic Contribution Iq

We will not attempt to use the mean spherical approximation to cal-
culate the thermodynamic potential I, as the core condition for non-
spherical ions will be much more complex to handle compared to the case
of spherical ions. Instead, we consider separate and independent estimates
for the reference Ir and electrostatic Iq parts to I.

For the electrostatic part we adopt a straightforward generalization of
the calculation of Iq for spherical ions summarized in Section 2. We repre-
sent the charge density of an ion by ± qL(r), where the plus and minus sign
apply, respectively, to the cationic and anionic species. Notice that the
coordinate r refers to the location of a point inside the ion measured rela-
tive to the center of the ion; and of course the density function L(r) is
normalized in such a way that > dr L(r)=1.

The electrostatic contribution to the potential energy of interaction
between any two ions i and j, with centers located at ri and rj, is given by
the convolution integral

kij(rij)=F d3x F d3xŒ L(x − ri) fij(|x − xŒ|) L(xŒ − rj), (3.1)

where rij — ri − rj and fij(|x − xŒ|)=qiqj/E |x − xŒ| is the Coulomb inter-
action between two point charges qi and qj located at points x and xŒ

[compare with Eq. (2.1)]. Taking the Fourier transform of both sides of
Eq. (3.1) we obtain the simpler form

k̃ij(k)=L̃(−k) f̃ij(k) L̃(k), (3.2)
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where f̃ij(k) is given in Eq. (2.2) and

L̃(k)=F d3r e ik · r L(r). (3.3)

For electrolyte solution models in which the ions are deformed into needles
aligned along the z-axis the charge density function takes the form
L(r)=d(x) d(y) l(z), for which Eq. (3.3) simplifies to

L̃(k)=l̃(kz)=F
.

−.

dz e ikz z l(z), (3.4)

where kz is the projection of the wavevector k along the z-axis. Thence, for
needle-like ions, Eq. (3.2) reduces to

k̃ij(k)=f̃ij(k) F(kz), (3.5)

where the charge form factor

F(kz)=l̃(−kz) l̃(kz)=|l̃(kz)|2, (3.6)

depends only on kz in the case that the ions are parallel needles.
We now consider the calculation of Iq by a procedure similar to the

diagramatic method outlined in Section 2 for electrolyte solutions compris-
ing spherical ions. If the needles, as is the case we want to focus upon here,
are aligned along the z-axis, the previous r-vertex becomes now a function
of kz. This kz-dependence will then enter through the function

x2(kz)=x2F(kz) (3.7)

where x2 and F(kz) were introduced, respectively, in Eqs. (2.4) and (3.6).
Summation of the modified graphs leads to a result for Iq for a solution of
charged needles that is the generalization of Eq. (2.3) for spherical ions:

Iq=F
.

−.

dkz

2p
Iq(kz), (3.8)

where

Iq(kz)=F
d2k+

(2p)2
3 −

1
2
5ln 11+

x2(kz)
k2

+ +k2
z

2−
x2(kz)

k2
+ +k2

z

64 . (3.9)

Clearly the argument of the double integral in Eq. (3.9) is basically the
same as the argument in the integral of Eq. (2.3); the only difference is the
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replacement of x2 in Eq. (2.3) by the function x2(kz) [cf. Eq. (3.7)], which
is a consequence of the non-zero spatial extent of the charge distribution in
the case of needles. This difference forces us to carry out the calculation
of Iq by performing the integration over the wavevector in two steps:
first perform the integral with respect to k+ =(kx, ky) to obtain Iq(kz),
Eq. (3.9), followed by integration with respect to kz to obtain Iq, Eq. (3.8).

The evaluation of Iq(kz) from Eq. (3.9) is straightforward; we find

Iq(kz)=−
1

8p
3x2(kz) − [k2

z +x2(kz)] ln 11+
x2(kz)

k2
z

24 . (3.10)

It is interesting to examine this expression for Iq(kz) of a solution of
needle-like ions in the limit when kz=k0 very small (but not zero), such
that both k0 ° x and F(k0) 4 1 are satisfied. This last relation follows
from Eq. (3.4) and the normalization condition for the charge density
function L(r). In this limit Iq(kz) given in Eq. (3.10) becomes identical to Iq

for a 2-dimensional (2d) Coulomb gas of point ions:

(Iq)2d=−
1

8p
x2

2d
51 − ln

x2
2d

k2
0

6 (3.11)

where x2
2d=2pbq2r, which should be contrasted with the expression for x2

for the solution of charged needles.
In order to calculate Iq with Eq. (3.8) we must first specify the charge

density function l(z) for a needle-like ion. Ideally, we would choose
l(z)=1/a for z such that |z| [ a/2 and l(z)=0 for |z| \ a/2, where a is the
distance between the foci of the ellipsoid through its axis of revolution
(recall that the ellipsoid results from the deformation of a spherical ion
along the z-axis). This particular form of l(z) corresponds to a foci-to-foci
line of uniform charge density along the primary axis of the ellipsoid. The
corresponding one dimensional Fourier transform l̃(kz) [cf. Eq. (3.4)] is
l̃(kz)=j0(kza/2), where j0(x)=sin(x)/x is the spherical Bessel function of
order zero. It then follows from Eqs. (3.6) and (3.7) that x2(kz) in Eq. (3.9)
is given by x2(kz)=x2 j0(kza/2)2.

While it should be possible to perform the integral in Eq. (3.8)
numerically with this form of x2(kz), in this work we adopt a more conve-
nient model for l(z) that allows us to perform the integrals analytically.
Our simpler choice for l(kz) is

l̃(kz)=˛1 for |kz | < c

0 for |kz | > c,
(3.12)
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where the parameter c represents the inverse range of the charge distribu-
tion of a needle. By performing the inverse Fourier transform of l̃(kz) we
find that the charge of a needle is distributed according to the function

l(z)=F
.

−.

dkz

2p
e ikz z l̃(kz)=F

c

−c

dkz

2p
e ikz z=

c

p

sin(cz)
cz

. (3.13)

It is important to point out the behaviour of this choice for l(z) with the
inverse length parameter c. From limc Q . [sin(cz)/pz]=d(z) we conclude
that the model l̃(kz) given by Eq. (3.12) recovers, when c Q ., the charge
density L(r)=d(r) of a point ion. Conversely, invoking the relation
limc Q 0 [sin(cz)/(cz)]=1, we observe that for c 4 0 and z ° c−1 the charge
density l̃(kz) given by Eq. (3.12) implies l(z)=c/p independent of z; this
corresponds to an infinitely long needle of uniform charge.

It then seems reasonable to consider Eqs. (3.12) and (3.13) as approx-
imations to the more realistic expressions for l̃(kz) and l(z) discussed in
the previous paragraph. From this viewpoint we may interpret 2p/c as a
measure of the length of the needles.

With Eq. (3.12) for l̃(kz), the wavevector-dependent function x2(kz)
becomes [cf. Eq. (3.7)]

x2(kz)=˛x2 for |kz | < c

0 for |kz | > c.
(3.14)

This simple expression allows us to calculate the integral in Eq. (3.8) to
obtain Iq. We find

Iq=F
c

−c

dkz

2p
Iq(kz)=

x3

24p2
5−

1
x

+1 3
x

+
1
x3
2 ln(1+x2)+4 Arctan 11

x
26 ,

(3.15)

where, for convenience, we have introduced the auxilliary variable x — x/c.
As expected from the discussion in the paragraph following Eq. (3.13),

Iq given by Eq. (3.15) recovers Eq. (2.5) in the point-ion limit c Q .. In the
opposite c Q 0 limit (infinitely long needles), Iq adquires the form of the
2-dimensional result (Iq)2d, Eq. (3.11), but with x2

2d replaced by x2c/p,
which represents a renormalization of the charge consistent with the 2-di-
mensional interaction along the needles.
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3.2. Equation of State for Solutions of Charge Needles

We can calculate the osmotic pressure P of the solution from the
thermodynamic potential I using the relation

bP=I − r 1 “I
“r
2

T
, (3.16)

where r is the total ionic number density. Assuming the partition of I dis-
cussed in Section 1, Eq. (1.1), we may decompose the osmotic pressure into
reference Pr and electrostatic Pq contributions

bP=bPr+bPq. (3.17)

The electrostatic contribution Pq may be calculated by performing the
calculation implied by the right hand hand of Eq. (3.16) on Iq given by
Eq. (3.15). Alternatively, we may first calculate the intermediate quantity
Pq(kz) defined by (exploiting the fact that x2 is proportional to the total
ionic density r)

bPq(kz)=Iq(kz) − x2 1“Iq(kz)
“x2

2
T
, (3.18)

and, afterwards, integrate the result with respect to kz in the way instructed
by Eq. (3.8)

bPq=F
.

−.

dkz

2p
bPq(kz). (3.19)

Both procedures give, of course, the same result. The second route is
somewhat more interesting, as the result for Pq(kz) that we derive from
Iq(kz) given by Eq. (3.10) is valid for any form of the charge density func-
tion l(z). We obtain

bPq(kz)=−
1

8p
3x2(kz) − k2

z ln 11+
x2(kz)

k2
z

24 . (3.20)

It is interesting to examine this result in the limit kz Q 0, at which
F(kz=0)=1. In this limit Eq. (3.20) reduces to bPq(kz=0)=−x2/8p,
which is directly comparable to the equation of state for the 2-dimensional
Coulomb gas b(Pq)2d=−x2

2d/8p. This equivalence is, of course, not unex-
pected, in view that a similar equivalence holds at the level of the thermo-
dynamic potential Iq(kz) [cf. Eqs. (3.10) and (3.11)].
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The electrostatic contribution Pq to the pressure is obtained from the
integration of Pq(kz) with respect to the wavevector as indicated in
Eq. (3.19). For this step we require a specific model for the function x2(kz).
With Eqs. (3.14) and (3.20) we calculate

bPq=F
c

−c

dkz

2p
bPq(kz)=−

x3

24p2 f(x), (3.21)

where we have introduced the auxilliary function

f(x)=2 Arctan(1/x)+(1/x)− (1/x3) ln(1+x2), (3.22)

with the variable x defined again as x=x/c.
To complete the calculation of the osmotic pressure P we need to

specify the reference part Pr. In this work we describe this contribution
with the Percus–Yevick equation for hard spheres (4, 13)

bPr=r
1+g+g2

(1 − g)3 , (3.23)

where g=(p/6) rs3 is the packing fraction and r is the total ionic number
density of the solution. Equation (3.23) may also be used to calculate the
reference contribution to the pressure for lined up ellipsoids, as they can be
obtained from ions of diameter s by simply stretching them along their
z-axis. (14)

The total osmotic pressure of the solution (ideal plus excess parts) is
then obtain by the sum of Pr, Eq. (3.23), and Pq, Eq. (3.21).

3.3. Critical Parameters for Solutions of Long Charged Aligned

Needles

When one examines the dependence of the osmotic pressure P with r

and T it becomes obvious that there is a region of the T-r plane for which

1“(bP)
“r

2
T
=

r

2
1“(bm)

“r
2

T
< 0, (3.24)

where m is the chemical potential of the electrolyte (i.e., m is the chemical
potential of the neutral pairs of particles with density r/2). (9) The realiza-
tion of inequality (3.24) is the signature that the solution of charged aligned
needles becomes unstable against phase separation into two liquid phases
of different concentration. (9) In Section 5 we examine in some detail the
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coexistence line for this liquid–liquid phase equilibrium; presently we derive
simple analytical expressions for the dependence of the critical parameters
Tcrit and rcrit with inverse charge range parameter c for solutions comprising
long needles (c small).

To obtain the location of the critical point of the solution we have to
find where the first and second derivatives of P vanish:

(a) 1“(bP)
“r

2
T
=0; (b) 1“

2(bP)
“r2

2
T
=0, at critical. (3.25)

To implement these conditions we shall assume that the critical density rcrit

is very small, so that we may approximate Eq. (3.23) for Pr by the first few
terms in its power series expansion with respect to r:

bPr 4 r(1+4g+ · · · ), (3.26)

From Eqs. (3.17), (3.21), and (3.26) we calculate

1“(bP)
“r

2
T
=1+8g −

x3

8p2 r
g(x), (3.27)

where we have introduced the auxilliary function

g(x)=
1
6

[3f(x)+x fŒ(x)]=Arctan 11
x
2 , (3.28)

and where the prime in fŒ(x) indicates the derivative of the function with
respect to the variable x. The second equality follows straightforwardly
from the definition of f(x) [cf. Eq. (3.22)].

From Eq. (3.27) we can calculate the second derivative of bP with
respect to the total ionic density. We find:

1“
2(bP)
“r2

2
T
=8

g

r
−

x3

16p2r2 [g(x)+xgŒ(x)]. (3.29)

Assuming that at critical g is small the term 8g can be neglected in
Eq. (3.27). Then at criticality, the right hand side of Eqs. (3.27) and (3.29)
equated to zero may be solved simultaneously to obtain the relation

g 4
1

16
51+x

gŒ(x)
g(x)

6 at critical. (3.30)
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In the limit where the ions are point charges (c Q .) we have
x=x/c Q 0. Taking into account the expressions for g(x) [Eq. (3.28)] and
of gŒ(x)=−(1+x2)−1, we observe that Eq. (3.30) locates the critical point
at g=1/16 for a binary electrolyte solution comprising spherical ions with
embedded point charges. Or, in terms of the reduced total ionic density,
rs3 4 0.12.

Long needles (c Q 0), on the other hand, correspond to the opposite
limit x Q .. The behavior of g(x) and gŒ(x) at large x is

g(x)=
1
x
51 −

1
3

1
x2+O 1 1

x4
26

gŒ(x)= −
1
x2
51 −

1
x2+O 1 1

x4
26 ,

(3.31)

which, when inserted in Eq. (3.30) yields, to lowest order in (1/x),

g=
1

24x2=
c2

24x2 at critical. (3.32)

At the same time, from the relation obtained by equating the right hand
side of Eq. (3.27) to zero, we find

x2=
8p2r

xg(x)
=

48pg

cs3 at critical, (3.33)

which can be used to substitute x2 in Eq. (3.32) (c Q 0) to obtain

g=
1
24
=c3s3

2p
at critical. (3.34)

This result shows how the critical density rcrit goes towards zero as c Q 0
for elongated needles.

We can obtain an estimate for the critical temperature for needles
(c Q 0) from Eq. (3.33). Recalling the definition of x2, Eq. (2.4), we have

bq2

Es
=

2p

cs
at critical. (3.35)

This relation indicates that Tcrit is proportional to the inverse charge range
parameter c, and thus also goes to zero as c Q 0.
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4. POLYELECTROLYTE NEEDLES

4.1. Equation of State for Solutions of Polyelectrolytes

A polyelectrolyte solution consists of charged polymers and counter-
ions that are point-like in comparison. As in Section 3, we will assume for
simplicity that the polymers can be represented by straight needles aligned
along the z-axis, while the much smaller counterions may be represented by
point charges. By adopting this simple model of a polyelectrolyte solution,
the results of Section 3 can be generalized in a straightforward way.

Let rn and qn be, respectively, the number density and the absolute
value of the charge of the needles. Similarly, let rc and qc be the corre-
sponding quantities for the counterions. Charge neutrality of the solution
requires that

qnrn=qcrc. (4.1)

For long polyelectrolytes the inequalities qn ± qc and rn ° rc apply.
Furthermore, the Debye inverse-shielding length x defined by Eq. (2.4) can
be decomposed as

x2=x2
n+x2

c , (4.2)

where x2
i =4pbq2

i ri/E and i=n, c. The inequalities remarked above then
imply that x2

n ± x2
c , so that to a first approximation x2 4 x2

n holds.
Equations (3.1) and (3.2) describe the Coulomb interaction between

any pair i and j of ions. If ion i is a polymer ion then the Fourier transform
of its associated density is L̃(k)=l̃(kz); here for simplicity we adopt
Eq. (3.12) for the charge density function. If, on the other hand, ion i is
one of the counterions, then its associated charge density is simply L̃(k)=1.
It follows that Eq. (3.10) is still applicable for the model polyelectrolyte
solution, except that now the wavevector-dependent function x2(z) takes
the slightly more complicated form

x2(kz)=˛x2
n+x2

c 4 x2
n for |kz | < c

x2
c for |kz | > c.

(4.3)

A consequence of the differences between Eqs. (3.14) and (4.3) is that Iq

and Pq for the polyelectrolyte solution differ from the corresponding Iq,
Eq. (3.15), and Pq, Eq. (3.21), for a solution of charged aligned needles. In
particular, we not only have the previous kz-integral in the range |kz | < c,
but also we must account for the contributions from the kz-integrals in the
ranges |kz | > c, where x2(kz) has the constant value x2

c . This effect changes
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Eq. (3.21) for the electrostatic contribution Pq to the osmotic pressure of
the solution into

bPq=−
1

24p2 {(x2
n+x2

c )3/2 f(x)+x3
c [f(0) − f(xc/c)]}, (4.4)

in which f(x) is the same auxilliary function introduced in Eq. (3.22).
Notice, however, the new interpretation x=xn/c of the variable x, which
differs from the interpretation x=x/c in Sections 3.1 and 3.2. The special
value of f(x) at x=0 required in Eq. (4.4) is f(0)=p.

At the same time, the presence of counterions also modifies the equation
of state of the reference (uncharged) system. To obtain the reference Pr, we
must extend Eq. (3.23) to mixtures. The corresponding extension for mix-
tures was first reported by Lebowitz, (15) who used the Wertheim (16) Laplace-
transform method to solve the Percus–Yevick integral equation for a
mixture of hard spheres. Baxter (17) rederived and generalized the results of
the mixture by using his Fourier transform factorization technique. The
equation of state for a mixture of hard spheres is

bPr=r 5 1
1 − t3

+
3t1t2

t0(1 − t3)2+
3t3

2

t0(1 − t3)3
6 (4.5)

where

tp=
p

6
C

i
ris

p
i , p=0, 1, 2, 3, (4.6)

with ri the number density and si the hard core diameter of species i. In
our polyelectrolyte solution model the needles are considered to be equiva-
lent to spheres of diameter sn, as pointed out following Eq. (3.23). The
counterions, on the other hand, are represented by point charges of zero
diameter (i.e., sc=0). Explicit evaluation of the tp with Eq. (4.6) and sub-
sequent substitution of the results into Eq. (4.5) yields, after some algebra

bPr=rn
5 1

Q2(1 − g)
+

1+g+g2

(1 − g)3
6 , (4.7)

where the packing fraction g=(p/6) rns3
n depends only on the number

density rn of the polyelectrolyte species. The parameter Q — `qc/qn=
`rn/rc is a convenient measure of the charge asymmetry of the model.

Recognizing that rn/Q2=rc, we see that Pr given by Eq. (4.7) is the
pressure of a one-component system of hard spheres plus the ideal gas
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pressure from the point particles in the available free volume between the
hard spheres.

The osmotic pressure P (ideal plus excess contributions) of the poly-
electrolyte solution is P=Pr+Pq, with Pq and Pr given, respectively, by
Eqs. (4.4) and (4.7).

4.2. Critical Parameters for Solutions of Polyelectrolytes

As it was the case of solutions of charged aligned needles, we also find
a region of the T − rn plane for which the inequality (3.24) is realized. In
this region the model polyelectrolyte solution is unstable against phase
separation into two liquid phases of different density of the binary poly-
electrolyte. Following a similar approach to that of Section 3.3, we derive
here simple analytical expressions for the parametric dependence of Tcrit

and (rn)crit with the inverse charge range parameter c and with the charge
asymmetry parameter Q.

We begin by simplifying Eqs. (4.4) and (4.7). Equation (4.4) suggests
that when x2

n ± x2
c (or, equivalently, Q2 ° 1), the x3

c -terms can be neglected:

bPq 4 −
x3

n

24p2 f(x). (4.8)

This estimate has the same form as Eq. (3.21) for bPq of a solution of
charged aligned needles; closer examination reveals differences: xn replaces
x of Eq. (3.21) and x is now interpreted as xn/c.

It should be noticed that approximation (4.8) fails for very long
needles. When x Q . (which occurs when c Q 0) the auxilliary function
f(x) behaves as

f(x)=
3
x

+1−
2
3
+2 ln

1
x
2 1

x3+O 1 1
x5
2 . (4.9)

It then follows from Eq. (3.21) that for

c [
f(0)

3
xc(xc/xn)2=(p/3) Q2 xc (4.10)

the term x3
c f(0) becomes dominant and, consequently, Eq. (4.8) is

inappropriate in this circumstance. With this caveat made clear, in the
remaining of this section we approximate bPq with Eq. (4.8) in order to
derive approximate analytical expressions for the critical parameters of the
solution.
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With respect to Eq. (4.7) for bPr, we assume: (i) that rc ± rn, and (ii)
that at the critical point g=(p/6) rns3

n is very small. The first assumption
applies to polyelectrolyte solutions with large charge asymmetry (small Q).
The second assumption is similar to the simplification invoked in Sec-
tion 3.3 for the analysis of the critical parameters in solutions of charged
aligned needles; here it allows us to neglect the second term in Eq. (4.7).
Further expansion of (1 − g)−1 in the first term finally gives

bPr=rc(1+g+ · · · ). (4.11)

The sum of Eqs. (4.8) and (4.11) gives us an approximate equation for
bP that we can use to estimate the critical parameters of the solution.
Differentiating once the approximate bP with respect to rn and equating to
zero (critical point) we find

1
Q2 (1+2g) −

x3
n

8p2rn
g(x)=0, at critical. (4.12)

Differentiating this expression with respect to rn and equating to zero gives

2g

Q2rn
−

x3
n

16p2r2
n

[g(x)+xgŒ(x)]=0, at critical. (4.13)

Solving Eqs. (4.12) and (4.13) for g gives [compare with Eq. (3.30)]

g=
1
4
51+x

gŒ(x)
g(x)

6 , at critical. (4.14)

Taking now into account Eqs. (3.31) we reduce this expression to

g=
c2

6x2
n

, at critical. (4.15)

Solving Eq. (4.12) at large x [with the help of Eqs. (3.31)] gives the result

x2
n=

48pg

Q2cs3
n

, at critical, (4.16)

which, when substituted on the right hand side of Eq. (4.15) produces

g=
Q
12
=c3 s3

n

2p
, at critical. (4.17)
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This result indicates that at critical the polyelectrolyte density (rn)crit is
proportional to the product Qc3/2. Thus, the dependence of (rn)crit with the
inverse charge range c is similar to the dependence of rcrit with c for solu-
tions of charged aligned needles. For the polyelectrolyte case, however,
(rn)crit is also sensitive to the degree of charge asymmetry Q of the model:
the larger the asymmetry (smaller Q) the smaller is (rn)crit.

We can now use Eq. (4.16) to estimate the critical temperature; we
obtain

bq2
n

Esn
=

2p

Q2 csn
, at critical. (4.18)

This result reveals that Tcrit is proportional to Q2c. The dependence of Tcrit

with c is the same as for solutions of charged aligned needles. Like (rn)crit,
Tcrit for the polyelectrolyte solution is also sensitive to degree of charge
asymmetry Q of the model.

5. COEXISTENCE LINE AND CRITICAL PARAMETERS

In this section we present the results of numerical calculations for the
dependence of the coexistence line with c for solutions of charged aligned
needles. We also investigate, for both the needle and the polyelectrolyte
systems, the parametric dependence of the critical temperature and density
with c (solutions of needles) and with c and Q (solutions of polyelectrolytes).

5.1. Charged Aligned Needles

It is convenient to express the thermodynamic properties of the solu-
tion in terms of reduced variables:

(a) r* — rs3; (b) T* — EkBTs/q2; (c) P* — Ps4E/q2, (5.1)

where s is the diameter of a sphere with the same volume as the needles.
An additional parameter, the reduced inverse charge range of a needle

c* — cs, (5.2)

is needed to complete the characterization of the state and features of a
solution of needles. In terms of these variables the equation for the bP
isotherm is [corresponds to the sum of Eqs. (3.21) and (3.23)]

P*
T*

=r*
1+g+g2

(1 − g)3 −
(x*)3

24p2 f(x), (5.3)
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Fig. 1. Coexistence lines T* versus r* for solutions of needles with different reduced inverse
charge range parameter. Top: c*=0.05; Middle: c*=1.0; Bottom: c*=50.0. For convenience
the y-scale of the graphs has been multiplied by the factor 1.0 × 103 (top) and 10.0 (middle and
bottom).

where g=(p/6) r* and x*=xs=`4pr*/T*. The auxilliary function f(x)
was defined in Eq. (3.22), with x=x/c=x*/c*.

To determine the coexistence line, i.e., the densities (r*)Œ and (r*)œ of
the phases that coexist in equilibrium at temperature T*, we implement the
Maxwell equal area contruction for the P*/T* isotherm, Eq. (5.3).

In Fig. 1 we report the coexistence lines T* versus r* for solutions of
needles characterized by three values of the reduced charge size parameter:
c*=50.0, c*=1.0, and c*=0.05. The figure shows that as c* decreases
(i.e., the needles are longer), both critical parameters Tg

crit and rg
crit decrease.

It is also revealed that the degree of asymmetry of the coexistence line (as
measured by the absolute value of the slopes of the low and high density
branches) increases as c* decreases.

In Fig. 2 we represent the parametric dependence of Tg
crit and rg

crit with
the inverse range charge parameter c*. The critical parameters displayed
are those associated with c* in the range 0.05 [ c* [ 105. The upper right
corner of the figure corresponds to very large values of c*, representative of
binary electrolyte solutions with ions close to spherical in shape and with
charge distribution of close to zero spatial extent. Conversely, the lower left
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(ρtc)red
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(T
c)
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d

Fig. 2. Dependence of the critical parameters of solutions of needles with the reduced
inverse charge range parameter c*. In every case “(T*)crit/“c* > 0 and “(rg

t )crit/“c* > 0. The
behavior of the curve in the lower left corner agrees well with the estimates in Eq. (5.5).

corner of the figure corresponds to small values of c*; i.e., solutions
comprising very long needles. The monotonous character of the curve is a
reflection of the fact that (“Tg

crit/“c*) > 0 and (“rg
crit/“c*) > 0 for every

value of c*.
The analytical estimates for Tg

crit and rg
crit derived in Section 3.3 apply

to the behavior of the curve in the lower left corner of Fig. 2. In terms of
reduced units formulas (3.34) and (3.35) are

rg
crit=

1
2
1 c*

2p
23/2

, Tg
crit=

c*
2p

, (5.4)

which implies the relation (valid for very long needles)

Tg
crit=(rg

crit)
2/3. (5.5)

5.2. Polyelectrolytes

To describe the model polyelectrolyte system we introduce the reduced
variables

(a) rg
n — rns3

n; (b) T* — EkBTsn/q2
n; (c) P* — Ps4

nE/q2
n, (5.6)

where sn is the diameter of a sphere with the same volume as a polyelec-
trolyte needle. The two additional parameters that characterize the poly-
electrolyte model are

(d) c* — csn and (e) Q — `(qc/qn). (5.7)
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The equation for the osmotic pressure isotherm bP of our model
polyelectrolyte solutions is given by the sum of Eqs. (4.4) and (4.7). In
reduced units

P*
T*

=
Pg

r

T*
+

Pg
q

T*
, (5.8)

where

Pg
r

T*
=rg

n
5 1

Q2(1 − g)
+

1+g+g2

(1 − g)3
6 , (5.9)

Pg
q

T*
= −

(xg
n )3

24p2 {(1+Q2)3/2 f(x)+Q3 [p − f(Qx)]}, (5.10)

where g=(p/6) rg
n , xg

n =xnsn, and x=xn/c=xg
n /c*.

The shape of the coexistence line for our model polyelectrolyte solu-
tions, and its dependence with c*, are qualitatively very similar to the
curves reported in Fig. 1 for solutions of charged aligned needles. Here we
focus on the dependence of the critical parameters Tg

crit and (rg
n )crit with the

model parameters c* and Q.
In Fig. 3 we represent the parametric dependence of Tg

crit and (rg
n )crit

with the inverse range charge parameter c* for two values, Q=0.005 and
Q=0.02, of the charge asymmetry parameter of the model. The critical
parameters displayed span the interval 0.05 [ c* [ 106. As in Fig. 2, the
upper right part of the curve corresponds to very large values of c*, repre-
sentative of solutions in which the polyelectrolyte ionic species is close to
spherical in shape, and has a charge distribution with close to zero spatial

0.00 0.10 0.20 0.30 0.40
(ρnc)red

0.0

0.1

0.2

0.3

(T
c)

re
d

Q=0.02

Q=0.005

Fig. 3. Dependence of the critical parameters of polyelectrolyte solutions with the reduced
inverse charge range parameter c* for two values of the charge asymmetry parameter Q. For
convenience the y-scale has been multiplied by 100.0. In every case (“Tg

crit/“c*) > 0. However,
for c* sufficiently low (“(rg

n )crit/“c*) < 0, as illustrated in Fig. 4 in detail.
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extent. Conversely, the lower left part of the curves corresponds to small
values of c*; i.e., solutions in which the polyelectrolyte species is a very
long needle. At first sight the curves in this figure closely resemble the
curve if Fig. 2 for charged aligned needles. Notice, however, the difference
between the scales of the x- and y-axis of both figures.

In terms of reduced units, Eqs. (4.17) and (4.18) are

rg
crit=Q 1 c*

2p
23/2

, Tg
crit=Q2 1 c*

2p
2 , (5.11)

which implies the relation (valid for long needles; see below, however)

Tg
crit=Q4/3(rg

crit)
2/3. (5.12)

This relation is well satisfied in the lower left corner of the figure. But a
more careful examination of the figure reveals that, for very small values of
c* (long polyelectrolyte needles) (“(rg

n )crit/“c*) becomes negative. This is
illustrated in more detail in Fig. 4.

The effect may be explained by the fact that at very small c* Eq. (4.8)
[that was used to derive the estimates (5.11) for the critical parameters] is
qualitatively incorrect; in the regime indicated by Eq. (4.10), c* < (p/3) Q3xg

n ,
the term Q3[p − f(Qx)] dominantes in Eq. (5.10).

6. SUMMARY

We have implemented a very simple extension of the Debye–Hückel
approximation to study the thermodynamic properties and the phase

0.00 0.05 0.10 0.15 0.20 0.25
(ρnc)red

0.00
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0.20

0.25

(T
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re
d

Fig. 4. Dependence of the critical parameters of polyelectrolyte solutions with c* in the case
Q=0.005. For convenience the x- and y-scales have been multiplied by, respectively, 1.0 × 103

and 1.0 × 105. In contrast to solutions of charged aligned needles, for polyelectrolyte solutions
with c* sufficiently low (“(rg

n )crit/“c*) < 0.
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diagram of ionic solutions comprising ions with a charge distribution of a
sizeable spatial extent (in contrast to the embedded single point charge
models, for which the charge distribution has zero spatial extent). The
models considered here may be viewed, conceptually, as generated by
deforming the spherical ions of the common models into ellipsoids that are
strictly aligned in the z-direction (while keeping the volume of the ion con-
stant); at the same time the original ionic point-charge distribution q d(r) is
deformed to q L(r), where the charge distribution function L(r) is spread
only along the direction of the deformation. The ‘‘spatial extent’’ of L(r) is
characterized by an inverse range parameter c, such that c Q . corresponds
to an ion with an embedded point charge. For sufficiently long deforma-
tions, corresponding to the limit c Q 0, the ions resemble rigid parallel
needles. It should be noticed that our treatment does not impose any con-
straint on the ions in the transversal (i.e., x and y) directions.

We examined in detail the sensitivity of the coexistence line and the
location of the critical point with the inverse range parameter c for two
solution models:

(a) Solutions comprising both cationic and anionic needles that are
identical in every respect except for the charge sign.

(b) Solutions in which only one of the ionic species is made up of
parallel rigid needles, while the other species is made up of point ions.

Clearly, system (a) is the analog, for ionic needles, of the familiar restricted
primitive model of electrolytes, while system (b) is a very simple model for
a polyelectrolyte solution.

For both systems we found that the critical density rcrit goes to zero as
the length of the needles is increased to large values (the limit c Q 0). For
the polyelectrolyte model, however, for c smaller than than a treshold value
[corresponding to the onset of inequality (4.10)], the critical density of the
solution actually increases with further elongation of the polyion species.

For the polyelectrolyte system, our results also shed light on the
marked sensitivity of the coexistence line and of the critical parameters
with the degree of charge asymmetry Q=`qc/qn between a polyion and
the counterion.

APPENDIX A: CORRELATION FUNCTIONS FOR NEEDLES

A straightforward way of obtaining the ion–ion correlation functions
hij(r) within the Debye–Hückel approximation is to solve the Ornstein–
Zernike integral equations

h̃(k)=c̃(k)+c̃(k) rh̃(k), (A.1)
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where h̃(k) and c̃(k) are 2 × 2 square matrices with elements h̃ij(k) and
c̃ij(k), respectively the three dimensional Fourier transforms of the ion–ion
correlation functions hij(r) and cij(r). Equation (A.1) is formally solved for
h̃(k) as

h̃(k)=(1 − rc̃(k))−1 c̃(k), (A.2)

where 1 is the unit matrix. Within the Debye–Hückel approximation, the
matrix of direct correlation functions takes the dyadic form

c̃(k)=−bk̃(k)=−
4pbF(kz)

Ek2 |q)(q|, (A.3)

where |q) is the column vector with elements q and − q, and (q| is the cor-
responding transpose row vector. The second equality follows directly from
Eqs. (2.2) and (3.2)–(3.6).

With Eq. (A.3) the right hand side of Eq. (A.2) may be easily cal-
culated with the help of the Sherman–Morrison formula; (18) we find that
the ij element of h̃(k) has the expression

h̃ij(k)=−
(4pb/E) F(kz) qiqj

k2+x2(kz)
, (A.4)

with x2(kz) given by Eq. (3.7). To obtain the r-space form of the correla-
tion function we must perform the inverse Fourier transform

hij(r+ , z)=−
4pbqiqj

E
F

.

−.

dkz

2p
e−ikz z F(kz) F

d2k+

(2p)2

e−ik + · r +

k2
z +k2

+ +x2(kz)
,

(A.5)

in which r+ and k+ are, respectively, the two dimensional vectors (x, y)
and (kx, ky). In polar coordinates d2k+ =df dk+ k+ ; the integration with
respect to f is immediate: (19)

hij(r+ , z)=−
4pbqiqj

E
F

.

−.

dkz

2p
e−ikz z F(kz) F

.

0

dk+

(2p)
k+ J0(k+ r+ )

k2
z +k2

+ +x2(kz)
,

(A.6)
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where J0 is the Bessel function of order zero. The inner integral can be
performed in closed form; (20) one obtains (taking into account the even
character of the argument of the inner integral with respect to kz)

hij(r+ , z)=−
2bqiqj

pE
F

.

0
dkz cos(kzz) F(kz) K0(`x2(kz)+k2

z r+ ),
(A.7)

where K0 is the modified Bessel function of order zero. (19, 20)

To proceed further, we must specify the functions F(kz) and x2(kz).
Here we adopt the expression, Eq. (3.14), that corresponds to the simple
model (3.12) for the Fourier transform l̃(kz) of the charge density of a
needle. Considering specifically the transverse correlations between needles
whose centers lie at the same height (that is z=0), Eq. (A.7) reduces to

hij(r+ , 0)=−
2bqiqj

pE
F

c

0
dkz K0(`x2+k2

z r+ ). (A.8)

When needles are very long, c 4 0, the integral may be approximated as

hij(r+ , 0)=−
2cbqiqj

pE
K0(xr+ ). (A.9)

The modified Bessel function has the asymptotic behavior (19, 20)

K0(xr+ )=1p

2
21/2 e−xr +

(xr+ )1/2
51 −

1
8xr+

+O((xr+ )−3/2)6 , (A.10)

from which we conclude that for long needles hij(r+ , 0) behaves at large r+

according to

hij(r+ , 0)=−12
p
21/2 cbqiqj

E

e−xr +

(xr+ )1/2 . (A.11)
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